Math 206A Lecture 1 Notes

Daniel Raban

September 28, 2018

1 Overview of Course Topics

1.1 The Borsuk conjecture

Theorem 1.1 (Borsuk conjecture). Let $P \subseteq \mathbb{R}^d$ be a compact, convex body. Then $P = \bigcup_{i=1}^{d+1} P_i$ such that diam $(P_i) < \text{diam}(P)$.

Why does this make sense?

Theorem 1.2 (Borsuk). This is true for d = 2. Moreover, there exists some $\varepsilon > 0$ such that diam $(P_i) < (1 - \varepsilon)$ diam(P).

Try this out with a hexagon, and split it in three parts to get some intuition. We will actually prove this. However, we will not prove the following:

Theorem 1.3. The Borsuk conjecture is true for d = 3.

The Borsul conjecture is actually not always true. We will prove the following.

Theorem 1.4 (Kahn-Kalai, 1990). The Borsuk conjecture is false for d > 2200.

The proof uses linear algebra methods in extremal combinatorics.

1.2 Convex polytopes

Let $P \subseteq \mathbb{R}^d$ be a convex polytope, and let $f_i(P)$ be the number of *i*-dimensional faces. What can be said about $(f_0, f_1, f_2, \ldots, f_{d-1})$?

Example 1.1. For d = 2, a pentagon has vector (5, 5).

Example 1.2. For d = 3, if we have 5 vertices, what vectors can we have? We can have (5, 9, 6) (for a slice of cake shape) and (5, 8, 5) (for a square pyramid shape).

In dimensions $d \ge 4$, we do not have a full picture of what is going on.

Theorem 1.5 (conjecture). There does not exist $P \subseteq \mathbb{R}^4$ with f-vector (n, 10n, 10n, n).

Definition 1.1. *P* is **simplicial** if every face is a simplex.

Theorem 1.6 (D-S). There exist $\lfloor n/2 \rfloor$ linear relations on f-vectors of simplicial polytopes in \mathbb{R}^n .

Later, we will prove an inequality relating f_2 , f_1 , and f_0 .

1.3 Rigidity

Here is a question. Let E be the edges of an icosahedron, and suppose $f: E \to \mathbb{R}_+$ such that |f(e) - 1| < 1/100. Does there exist a "perturbed icosahedron" with edge lengths $\{f(e)\}$? The answer is yes, due to a theorem of Dehn¹ from about 1912. In fact, this is true for every simplicial polytope.

1.4 Combinatorial geometry of curves

Let Q be an equilateral convex polygon (all sides have the same unit length).

Example 1.3. For quadrilaterals, we can have a rhombus or a square.

Let $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ be angles of Q. We know that $\sum \alpha_i = (n-2)\pi$.

Theorem 1.7 (4 vertex theorem for polygonal curves). There exist at least 4 sign changes in $(\alpha_{i+1} - \alpha_i)$.

We will see a geometric proof of this, and we will provide a combinatorial proof for the result in 3 dimensions. It actually gets simpler!

This actually implies the following theorem about smooth curves:

Theorem 1.8. The curvature of a smooth, closed curve changes sign at least 4 times.

¹Dehn was a student of Hilbert.